Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

نویسندگان

  • Ahmet Bekir Eskisehir Osmangazi University, Art-Science Faculty, Department of Mathematics-Computer
چکیده مقاله:

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

exact solutions of the 2d ginzburg-landau equation by the first integral method

the first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. this method can be applied to non integrable equations as well as to integrable ones. in this paper, the first integral method is used to construct exact solutions of the 2d ginzburg-landau equation.

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Solitary Wave solutions of the BK equation and ALWW system by using the first integral method

Solitary wave solutions to the Broer-Kaup equations and approximate long water wave equations are considered challenging by using the rst integral method.The exact solutions obtained during the present investigation are new. This method can be applied to nonintegrable equations as well as to integrable ones.

متن کامل

Periodic Solutions of the Ginzburg-landau Equation

Spatially periodic solutions to the Ginzburg-Landau equation are considered. In particular we obtain: criteria for primary and secondary bifurcation; limit cycle solutions; nonlinear dispersion relations relating spatial and temporal frequencies. Only relatively simple tools appear in the treatment and as a result a wide range of parameter cases are considered. Finally we briefly treat the case...

متن کامل

Exact solutions of the Kudryashov–Sinelshchikov equation and nonlinear telegraph equation via the first integral method

Nonlinear evolution equations are widely used to describe complex phenomena in various sciences such as fluid physics, condensed matter, biophysics, plasma physics, nonlinear optics, quantum field theory and particle physics, etc. In recent years, various powerful methods have been presented for finding exact solutions of the nonlinear evolution equations in mathematical physics, such as, tanh ...

متن کامل

some new exact traveling wave solutions one dimensional modified complex ginzburg- landau equation

‎in this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear pdes in mathmatical physics; namely the one-‎dimensional modified complex ginzburg-landau equation by using the $ (g^{'}/g) $ expansion method‎, homogeneous balance method, extended f-expansion method‎. ‎by ‎using homogeneous balance principle and the extended f-expansion, more periodic wave solutions expres...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 2  شماره 2

صفحات  69- 76

تاریخ انتشار 2014-04-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023